
Cross-Contract Static Analysis for Detecting Practical
Reentrancy Vulnerabilities in Smart Contracts

Yinxing Xue
University of Science and Technology

of China

Hefei, China

yxxue@ustc.edu.cn

Mingliang Ma
University of Science and Technology

of China

Hefei, China

sa517245@mail.ustc.edu.cn

Yun Lin∗

National University of Singapore

Singapore

dcsliny@nus.edu.sg

Yulei Sui
University of Technology Sydney

Sydney, Austrilia

yulei.sui@uts.edu.au

Jiaming Ye
University of Science and Technology

of China

Hefei, China

sa517462@mail.ustc.edu.cn

Tianyong Peng
University of Science and Technology

of China

Hefei, China

sa517270@mail.ustc.edu.cn

ABSTRACT

Reentrancy bugs, one of themost severe vulnerabilities in smart con-

tracts, have caused huge financial loss in recent years. Researchers

have proposed many approaches to detecting them. However, em-

pirical studies have shown that these approaches suffer from un-

desirable false positives and false negatives, when the code under

detection involves the interaction between multiple smart contracts.

In this paper, we propose an accurate and efficient cross-contract

reentrancy detection approach in practice. Rather than design rule-

of-thumb heuristics, we conduct a large empirical study of 11714

real-world contracts from Etherscan against three well-known

general-purpose security tools for reentrancy detection. We manu-

ally summarized the reentrancy scenarios where the state-of-the-art

approaches cannot address. Based on the empirical evidence, we

present Clairvoyance, a cross-function and cross-contract static

analysis to detect reentrancy vulnerabilities in real world with sig-

nificantly higher accuracy. To reduce false negatives, we enable,

for the first time, a cross-contract call chain analysis by tracking

possibly tainted paths. To reduce false positives, we systematically

summarized five major path protective techniques (PPTs) to sup-

port fast yet precise path feasibility checking. We implemented our

approach and compared Clairvoyance with five state-of-the-art

tools on 17770 real-worlds contracts. The results show that Clair-

voyance yields the best detection accuracy among all the five tools

and also finds 101 unknown reentrancy vulnerabilities.

CCS CONCEPTS

• Security and privacy→Distributed systems security; • Soft-

ware and its engineering→ Software safety.

∗Yun Lin is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416553

KEYWORDS

reentrancy vulnerabilities, static taint analysis, cross-contract anal-

ysis, smart contracts

ACM Reference Format:

Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Jiaming Ye, and Tiany-

ong Peng. 2020. Cross-Contract Static Analysis for Detecting Practical

Reentrancy Vulnerabilities in Smart Contracts. In 35th IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE ’20), September

21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3324884.3416553

1 INTRODUCTION

Powered by the blockchain platform, smart contracts are executable

contracts written in the form of computer programs [38], which fa-

cilitate, verify, and enforce the trading transactions between buyers

and sellers in an automatic and transparent way without involving

third parties. On the most popular platform (i.e., Ethereum [1]),

contracts are written using Solidity language. Security issues, as

surveyed in [8], are the major concerns of Solidity programs.

Reentrancy, also known as the notorious DAO attack [16], has

caused a devastating financial loss of around $150 million stolen

Ether (digital currency) for many Ethereum accounts. The vulnera-

bility lies in that the attacker can leverage fallback functionalities

in Solidity to repetitively incur the payment until exhausting the

balance of the victim (an example is shown in Fig. 1). To address

this issue, existing approaches [13, 24, 25, 35, 48–50] define a va-

riety of rules to detect and avoid illegal (or suspicious) use of the

fallback function in Solidity program. In this regard, most general-

purpose security scanning tools (e.g., Slither [49], Oyente [35],

Zeus [25], Mythril [13], Manticore [48], Contract-Fuzzer [24]

and Securify [50]) claim to support reentrancy bug detection.

However, there lacks a study on how the existing general-purpose

security tools actually perform on large-scale reentrancy detec-

tion from real-world contracts. To answer this problem, in this

paper, we initially conduct a large-scale empirical study on us-

ing three general-purpose static tools for reentrancy detection

(i.e., Oyente [35] from CCS’16, Securify [50] from CCS’18 and

Slither [49] from industry) on 11714 real-world contracts from

Etherscan [2]. The empirical evidence shows that:

1029

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

• Programmers have already invented many programming

paradigms to avoid reentrancy attack. Without being aware

of those paradigms, existing state-of-the-art security tools

report many false positives (FPs);

• On the other hand, existing tools usually define rules at

intra-procedural level, which incurs the incomplete model-

ing of program paths, particularly cross-contract and inter-

procedural call paths in Solidity programs. It also causes a

considerable number of false negatives (FNs).

In this work, we formally summarize those paradigms to avoid

reentrancy attack as Path Protection Technique (PPT), and propose a

cross-function and cross-contract static analysis approach for reen-

trancy bug detection. Our approach models more sound interproce-

dural paths (to reduce FNs) and identifies feasible interprocedural

paths by considering PPTs (to reduce FPs). More specifically, we

first construct a cross-contract interprocedural control flow graph

(XCFG), on which a static taint analysis is performed to identify

potential paths that contain a reentrancy, and then perform a light-

weight symbolic analysis based on PPTs to eliminate infeasible

paths, and finally report reentrancy bugs based on the refined fea-

sible program paths. Based on the technique, we build and publish

our tool Clairvoyance (avaiable at [5]). We compared Clairvoy-

ance with five state-of-the-art tools on 17770 contracts fromGoogle

BigQuery Open Dataset. The experimental results show that Clair-

voyance (1) yields the best detection accuracy among all the tools

and (2) finds 101 unknown reentrancy vulnerabilities.

In summary, this paper makes the following contributions:

• We present a large-scale empirical study to (1) evaluate the

ineffectiveness of three state-of-the-art static tools to detect

reentrancy attack in practice and (2) understand the practi-

cal programming paradigm (summarized as PPT) to avoid

reentrancy attack.

• We present a new static reentrancy detection approach to

enable (1) more sound analysis by modeling cross-function

cross-contract behaviors, and (2) more precise analysis by

applying a light-weight symbolic analysis based on PPTs.

• Unlike existing static tools which yield a binary result (vul-

nerable or not), our approach supports a more accurate bug

reporting method by providing the feasible call chain(s) that

cause the reentrancy. So the understandability of detection

results is improved.

• We have compared our tool, Clairvoyance, with the three

state-of-the-art static tools (i.e., Oyente [35], Securify [50]

and Slither [49]) and two dynamic tools (i.e., Mythril [13]

and sFuzz [21]) on 17770 contracts from Google BigQuery

Open Dataset. The results show that Clairvoyance has

significantly better accuracy than the compared tools, and

successfully finds 101 unknown reentrancy bugs that are all

missed by the compared tools. Our experimental results are

publicly available at [5].

2 BACKGROUND AND MOTIVATION

In this section, we briefly introduce the fallback mechanism of

Solidity and explain how it can cause reentrancy. Then, we in-

troduce three state-of-the-art static tools, including Slither [49],

Securify [50], and Oyente [35], with examples of the FNs and FPs.

1 contract Partner {
2 mapping(address => uint256) public balances;
3 function deposit () {
4 balances[msg.sender] += msg.value;
5 }
6 function withdraw(uint256 _amount) public {
7 require(balances[msg.sender] >= _amount);
8 require(msg.sender.call.value(_amount)());
9 balances[msg.sender] -= _amount;
10 }
11 }

Figure 1: A simple example for reentrancy vulnerability.

2.1 Fallback Function of Solidity Program

On Ethereum, most smart contracts are implemented in Solidity,

which supports basic structural elements, including contract (simi-

lar to class in OOP), variable, function, etc. Once Solidity contract

is published (e.g., on Ethereum), the program is regarded as a “law”

and can no longer be altered. Given the law property, special mech-

anisms such as fallback function are introduced. From law point

of view, the contract should define its behavior in any case. Hence,

from technical point of view, the execution of fallback function is

triggered to handle some exceptional cases such as (1) when its

owning contract is called with an unknown function name, or (2)

when the contract receives plain Ether (i.e., Ehtereum currency)

without data. Nevertheless, such a mechanism introduces notorious

reentrancy vulnerabilities, causing devastating economic loss [6, 8].

2.2 Reentrancy Vulnerability

Fig. 1 shows an example of a reentrancy vulnerability. The Partner

contract supports other contracts to deposit money to (via deposit()

function at line 3) or withdrawmoney from (via withdraw() function

at line 6) its account. The other contract account is represented by

balances[msg.sender] field in Partner contract1. In the withdraw()

function, Partner contract first checkswhether balances[msg.sender]

has a sufficient amount (line 7). If so, Partner transfers to the other

contract (line 8) and updates the balances (line 9).

The root cause lies in that the malicious contract can repet-

itively incur the payment (line 8) without finishing the call to

the method withdraw() until exhuasting the balance. Assume a

malicious contract Mali has two functions, one function attack()

that calls Partner.withdraw() and the other function (the fallback

function) that calls Partner.withdraw(). The attack happens when

Mali.attack() calls withdraw() function, which executes line 8 of

Fig. 1. The execution of msg.sender.call.value() function at line

8 will trigger the fallback function of Mali contract. Note that Mali

contract can craft its own fallback function to call Partner.withdraw()

function for his or her own benefits. Once the fallback function

of Mali contract is triggered to call Partner.withdraw() function,

the control flow goes back to line 7 and line 8, before balances-

[msg.sender] can be updated at line 9. Such a trick nullifies the

condition check at line 7. By this means, Mali can repeatedly with-

draw money from Partner contract.

2.3 State-of-the-arts and Their Limitations

Existing static security tools such as Slither [49], Securify [50],

and Oyente [35] claim to address this vulnerability. These tools

1In Solidity, each contract has an address. Keyword msg.sender represents the
address of contract interacting with the owner contract.

1030

1 contract Trader {
2 TokenSale tokenSale = new TokenSale (); // Internal

Contract defined at line 8 in the same file
3 function combination () {
4 tokenSale.buyTokensWithWei ();
5 tokenSale.buyTokens(beneficiary);
6 }
7 }
8 contract TokenSale {
9 TokenOnSale tokenOnSale; // External Contract
10 ...
11 function set(address _add) {
12 tokenOnSale = TokenOnSale(_add);
13 }
14 function buyTokens(address beneficiary) {
15 if (starAllocationToTokenSale > 0) {
16 tokenOnSale.mint(beneficiary , tokens);
17 }
18 }
19 function buyTokensWithWei () onlyTrader {
20 wallet.transfer(weiAmount);
21 }
22 }

Figure 2: Complicated call graph and control flow graph

cross contracts — an FN for Slither, Oyente and Securify.

have their self-defined rules for checking vulnerabilities in a Solidity

program. For example, according to Slither’s rule, a reentrancy

may happen if it satisfies the following condition:
(
r (varд) ∨w (varд)

)
� externCall � w (varд) ⇒ reentrancy (1)

In Rule 1, r () and w() denote the read and write operations,

respectively; varд denotes a certain public variable; � denotes the
execution order based on the program’s control flow; externCall
denotes the external call to the payment functions except built-in

functions send() and transfer(). Thus, the rule means that if there

exists an external call to a payment function and the call is between

two write operations to the same public variable, a reentrancy may

happen. In Fig. 1, function withdraw() is identified as a vulnerable

function by this rule. Specifically, (1) a read access to a public state

variable (at line 7), then (2) a call to an external address via the

low-level function call.value() (at line 8), and (3) a write access

to the public state variable (at line 9). Oyente and Securify have

similar static rules to detect the reentrancy in Fig. 1 (see §4).

These simple rules have been proved to be effective in some

cases, but more often, make detection results fall into FPs or FNs.

False Negative (Missing Complete Call Chain): Existing static

tools for smart contracts usually fail to consider cross-function

or cross-contract call chains, missing analysis of some important

yet suspicious program paths. Fig. 2 shows a contract contains a

reentrancy vulnerability that is missed by Slither, Securify, and

Oyente. Fig. 3 shows its corresponding cross-contract CFG (XCFG),

where each rectangle represents a function, each circle represents

a statement denoted by its line number in Fig. 2, and each directed

edge represents the control flow. Moreover, we use a virtual node

(denoted by V) in the function of TokenSale.buyTokens() to show

the returned control flow, a grey node to represent payment state-

ment, and dashed rectangle to represent an unknown function of

an external contract (i.e., TokenOnSale.mint()). Notably, the dashed

rectangle could call any function as its behavior is unknown.

From Fig. 3, we can see that, as long as TokenOnSale contract is

malicious, there exists a call chain 4©→ 20©→ 4©→ 5©→ 15©→
16©→ ?©→ 4©→ ..., which allows the attacker to recursively call
wallet.transfer(weiAmount) (line 20). Such attack crosses multiple

Figure 3: Cross-function and Cross-contract CFG for Fig. 2∗.

∗Note: The grey node 20© denotes a statement of payment function (reen-

trancy vulnerability requires reentering of a payment function), ?© denotes

a malicious statement in the external unknown function that may call back.

contracts and functions, and does not write any public variable,

which makes it hard to enumerate rules for its detection.

False Positive (Inaccurate Path Feasibility): Existing static tools

can hardly identify path feasibility. Fig. 4 shows a contract that is

mistakenly reported as a reentrancy vulnerability by Slither and

Securify as it conforms to their defined rules. Fig. 5 shows its

XCFG. We can see that there exists a reentered call chain 5© →
7©→ 8©→ 9©→ ?©→ 5©→ 7©→ ..., as the unknown function
ZTHTKN.buyAndSetDivPercentage.value()may use the fallback func-

tion to call back function receiveDividends(). However, in practice,

such path in CFG to exercise the chain can never be feasible. The

reason is that 5©→ 7© requires reEntered = true while ?©→ 5©
→ 7© requires reEntered = f alse . They are contradictory.
Fig. 4 is a typical example, where a path protective technique

(PPT) is applied as a countermeasure for reentrancy attack. The

logic of the code ensures that the check condition (line 5) can al-

ways protect the execution of payment statement. Unfortunately,

both Slither and Securify fail to recognize this infeasible path.

Notably, to accurately identify this PPT from code, light-weight sym-

bolic analysis is required to check locking at line 8 and unlocking at

line 10, and such analysis could be just limited in the internal function.

To overcoming FPs/FNs is non-trivial, which requires addressing

these challenges:

• Given the behavior of the possible externally-interacting contract

is unknown, how do we model its unknown call graph?

• The path number explodes when the function/contract number

increases, how do we efficiently identify those suspicious reen-

trancy attack paths from a set of Solidity programs?

• Can we conduct the light-weight path feasibility analysis, which

can achieve the efficiency meanwhile not compromising the

soundness/completeness of our approach?

• How can we incorporate Solidity-specific features impacting

control flow graph like function modifier, address binding, etc.?

We propose a scalable static approach that can systematically

compute those suspicious and feasible paths to cause reentrancy

vulnerability with respect to both cross-contract call chains and

1031

1 contract ZethrBankroll is ERC223Receiving {
2 ZTHInterface public ZTHTKN;
3 bool internal reEntered;
4 function receiveDividends () public payable {
5 if (! reEntered) {
6 ...
7 if (ActualBalance > 0.01 ether) {
8 reEntered = true;
9 ZTHTKN.buyAndSetDivPercentage.value(ActualBalance

)(address (0x0), 33, "");
10 reEntered = false; }
11 }
12 }
13 }
14 contract ZTHInterface { // To be inherited for

implementing the function buyAndSetDivPercentage
15 function buyAndSetDivPercentage(address _referredBy ,

uint8 _divChoice , string providedUnhashedPass)
public payable returns (uint); // Declaration

16 }

Figure 4: Complicated path constraints due to using an exe-

cution lock reEntered — an FP for Slither and Securify.

ZethrBankroll.receiveDividends()

5

7

8

V

ZTHTKN.buyAndSet
DivPercentage()

?
9

10

Figure 5: Cross-function and Cross-contract CFG for Fig. 4.

path feasibility. The cross-contract call chain construction can ef-

fectively mitigate the problem of missing reentrancy control flow.

Identifying infeasible paths mainly relies on path protective tech-

niques (PPTs) to reduce the FPs where reentrancy vulnerabilities

never exist.

3 OVERVIEW

Problem Statement.We argue that reentrancy attack could hap-

pen when there exists a feasible program path in cross-contract CFG

(XCFG) of Solidity contracts, which starts from setting an insecure

contract (or address) and ends with the payment function call (e.g.,

call().value()) of that contract (or address).

Assumption&Challenges.Our approach follows the close-world

assumption of analyzing smart contracts. Given a target contract,

our analysis scope includes the source code of all its caller and

callee contracts. The Solidity APIs of a program without function

bodies (e.g., fallback and low-level built-in functions) are analyzed

based on their side-effect summarization following the standard

approach in static analysis.

Fig. 6 shows an overview of our approach, which takes as input

the source code of Solidity contracts and its caller/callee, and re-

ports call chain(s) with path conditions to explain how a malicious

contract can construct a reentrancy attack to exploit the vulnera-

bility. In Fig. 6, each rectangle represents an artifact, each ellipse

represents a step (or process), each edge represents the workflow of

how a step takes some artifacts and outputs some new artifact. In

addition, we highlight the input/output in grey. As shown in Fig. 6,

our approach consists of the following four steps:

Figure 6: System diagram

S1. XCFG Construction: We first construct cross-contract call

graph and CFG among the input smart contracts. In this step,

we handle Solidity specific features (e.g., modifier, fallback func-

tion) and collect all call chains starting from public functions.

S2. Static Taint Analysis: Next, we identify tainted contract ob-

jects or addresses, and track how they are used and propagated

along the call chain from the XCFG. In this step, we identify

vulnerable call chains from XCFG, which start with a suspi-

cious contract address (or object) and end with the external

function call.

S3. Empirical Study (Summarizing PPTs): In order to mitigate

the FPs of reported paths (abstracted by the vulnerable call

chains), we summarize a set of PPTs for reentrancy attack

through an empirical study, which could be used for checking

the path feasibility in a scalable way.

S4. Path Filtering: For these PPTs, we define the corresponding

filtering patterns via program analysis: paths with access con-

trol, paths with hard-coded address, paths with execution locks,

paths with internal updating before payment, etc. Then, given

the vulnerable call chains from S2 and the filtering patterns be-

hind PPTs from S3, we filter out infeasible paths, which cannot

form reentrancy in practice and hence lead to FPs. Finally, the

remaining reachable paths will be the outputting results.

S1 (§5.1) and S2 (§5.2) are designed for mitigating FNs, while S4

(§5.3 and §5.4) is designed for addressing FPs. Next, for readability,

we first explain S3 (§4) — the empirical study for reasons: (1) quan-

titatively analyzing how (in)effective existing static tools on 11714

smart contracts in the field; (2) how effective our summarized PPTs

are. Then, we proceed to elaborate on each step of our approach.

4 EMPIRICAL STUDY OF TYPICAL FALSE
POSITIVES FOR EXISTING RULES

In our empirical study, Slither [20] v0.4.6, Oyente [35] v0.2.7

and Securify [50] v1.0 run on 11714 frequently-used real-world

contracts from the well-known third-party website Etherscan for

contract indexing and browser [2]. For the detection results, we

recruit 4 researchers to spend 2 months in reviewing the results

and summarizing the patterns of FPs for rules in these tools.

4.1 Rules of Existing Tools

In §2.3, the detection rule of Slither checks whether there exists an

external call of money transfer functions (except built-in functions

1032

1 contract CozyTimeAuction {
2 function buyCozy(uint256 _pepeId , uint256 _cozyCand ,

address _pepeRec) public payable {
3 require(address(pepeContract) == msg.sender);
4 PepeAuction storage auction = auctions[_pepeId];
5 totalFee = ... // ignore the details
6 auction.seller.transfer(price - totalFee); // transfer
7 if(! pepeContract.cozyTime(auction.pepeId , _cozyCand ,

_pepeRec)) {...} // external call
8 delete auctions[_pepeId]; // write after call
9 }...
10 }

Figure 7: A real case of using access control (PPT1) for the

account address — an FP for Slither and Securify.

send(), transfer()) that happens between writes to a public vari-

able. Similarly, according to [50], we find that Securify proposes

the compliance pattern No writes after call to prevent reentrancy2.

Hence, the corresponding violation pattern is to have writes after

call, as shown by the Rule 2:

externCall � w (varд) ⇒ reentrancy (2)

where w(varд) means write operation(s) to a public variable and
externCall refers to the external call for money transfer functions.

Oyente supports the following Rule 3, according to [35]:

r (varд) ∧ (дastrans > 2300) ∧ (vart_a > vard_a)

∧
(
w (varд) � externCall)

)
⇒ reentrancy

(3)

where r () and w() means read and write operation(s) to a public
variable, дastrans > 2300 means the gas for transaction must be

greater than 2300, the transfer amount vart_a must be greater than
the deposit amount vard_a , and the public variable varд should

be changed before the external call (denoted by �). As Oyente

works on the EVM bytecode instructions, the gas consumption

is estimated on the instructions. Notably, Slither and Securify

consider writes after calls as one condition that forms reentrancy,

but Oyente considers writes before calls as one key condition3.

After we investigate the implementations of these three state-

of-the-arts, we observe that their detection rules are too simple

and coarse-grained, basically ignorant of the possible programming

skills used by the developer to prevent the reentrancy. Shortly, path

in-feasibility analysis is insufficiently supported by the three static

state-of-the-arts. Hence, it is expected that these tools will yield

many FPs for real-world contracts.

4.2 PPT1: Access Control Before Payment

Fig. 7 gives an FP reported by Slither and Securify based on its

Rule 1. The code firstly reads the state variable auctions[_pepeId];

then calls an external function via pepeContract.cozyTime(); last,

writes (delete instruction belongs to the general write operations)

to the public variable auctions[_pepeId]. However, in reality, reen-

trancy cannot be triggered by external attackers due to the require

check require(address(pepeContract) == msg.sender) at line 3 in

Fig. 7. Access control usually checks the invoker of the payment

functions — checking whether the identity of msg.sender satisfies

2In Securify, two types of detected errors are related to reentrancy, i.e., DAO and
DAO Constant Gas. The two errors will lead to reentrancy, and the only difference is
whether the gas will be recursively used or not (with constant gas).
3We confirm this rule from the implementation of Oyente.

1 interface HgInterface {
2 function buy(address _add) payable external returns(

uint256);
3 }
4 contract Richer3D {
5 ...
6 mapping(uint256=>DataModal.RoundInfo) rID;
7 HgInterface constant p3d = HgInterface (0

xB3775fB83F7D12A36E0475aBdD1FCA35c091efBe);
8 function calculateTarget () public {
9 if(increaseBalance >= targetBalance) {
10 if(increaseBalance > 0)
11 { p3d.buy.value(ethForP3D)(p3dAddress); }
12 }...
13 rID[rNumber]. lastTime = _timestamp ;...
14 }
15 }

Figure 8: A real case of using the constant value (PPT2) for

the contract address — an FP for Oyente and Securify.

1 contract RTB2 {
2 modifier onlyHuman () {
3 address _addr = msg.sender;
4 uint256 _codeLength;
5 assembly {_codeLength := extcodesize(_addr)}
6 require(_codeLength == 0, "sorry humans only"); _;
7 }
8 function buy(uint256 _amt) external onlyHuman payable{
9 require(balances[msg.sender] >= _amt);
10 require(msg.sender.call.value(_amt)());
11 balances[msg.sender] -= _amt;
12 }
13 }

Figure 9: A real case of using a self-defined modifier for pro-

tection (PPT3) — an FP for Slither, Oyente and Securify.

certain conditions (e.g., in some authorized list, with a good reputa-

tion, or having the dealing history). Notably, PPT1 needs to reside

in the same function as external calls, otherwise it can be avoided.

4.3 PPT2: Hard-coding Payment Address

Fig. 8 shows an FP reported by Oyente and Securify, which adopts

a hard-coded address to prevent the malicious external attack. Ac-

cording to Rule 3, as this code block has a balance check and a

low-level-call for money transfer, it is reported by Oyente as a

reentrancy. Similarly, according to Rule 2, there is a write operation

to the public variable rID[rNumber].lastTime after the external call,

and hence Securify detects it. However, this example cannot be

exploited by any arbitrary external address, owing to the 20 bytes

hard-coded address (i.e., 0xB3...efBe) for contract object p3d at line

7 in Fig. 8. Hence, PPT2 restricts the external malicious access.

4.4 PPT3: Protection by Self-defined Modifiers

Fig. 9 gives another FP that is reported by the existing tools ig-

noring PPT3. This code block actually considers the security issue

and adds the self-defined modifier onlyHuman() before the poten-

tial vulnerable function buy(). Since onlyHuman() restricts that the

transaction can be only conducted by the address of msg.sender via

the usage of keyword extcodesize, which returns 0 if it is called

from the constructor of a contract. In such a way, via PPT3, buy

could not be recursively called by external attackers.

4.5 PPT4: Protection by Execution Locks

Different from the above PPTs relying on access control or re-

stricted addresses to prevent external malicious calls, PPT4 pre-

vents the recursive entrance of the function — eliminating the issue

1033

1 contract PvPCrash {
2 function withdraw () gasMin public returns (bool) {
3 address _user = msg.sender;
4 uint256 _userBalance;
5 if (! roundEnded && withdrawBlock[block.number] <=

maxNumBlock) {
6 _userBalance = getBalance(_user);
7 if (_balance > _userBalance) {
8 if (_userBalance > 0) {
9 _user.transfer(_userBalance); // externalCall
10 emit Withdraw(_user , _userBalance);
11 }
12 return true;
13 }
14 }
15 return true;
16 }
17 }

Figure 10: A real case of updating internal states before pay-

ment (PPT5) — an FP for Oyente.

from root. For instance, in Fig. 4, the internal instance variable

reEntered will be checked at line 5 before processing the business

logic between line 8 and 10. To prevent the reentering due to calling

ZTHTKN.buyAndSetDivPercentage.value() , reEnteredwill switch to

true; after the transaction is finished, it will be reverted to false

to allow other transactions. Hence, by virtue of PPT4, this solution

is similar with using mutex, which prevents the reentrancy from

both the authorized addresses or external malicious addresses.

4.6 PPT5: Internal Updating Before Payment

PPT5 is required to finish all internal work (i.e., state and balance

changes) and then call the external payment function. According to

the report from ConsenSys [15], the recommended pattern is com-

posed of three steps: (1) all the require checks are at the beginning

of function buy_the_tokens; (2) in the middle are the internal state

changes for bool and numeric variables; (3) at the end is the call of

built-in payment functions transfer() of some external contracts

or addresses. This pattern is also recommended by Solidity official

document at [42], named as Checks-Effects-Interactions pattern to

prevent reentrancy. For example, for the code in Fig. 10, it follows

this safe pattern. However, according to Rule 3 for Oyente, this

code block is mistakenly reported as vulnerable.

4.7 FP Statistics of Existing Rules

Finally, we audit all the results of the three tools, and summarize the

number of FPs due to mis-considerations or unsatisfactory support

of these PPTs. As a result, 67.5% of FPs are accounted for the 5 PPTs

in Slither, 71.4% of FPs are for PPTs in Oyente, and 95.15% of FPs

are for PPTs in Securify. Hence, we can confirm that the available

static tools ignore or unsatisfactorily support these PPTs in code.

Note that recall is not statistically evaluated in this empirical study,

as our goal is to understand the reasons behind the FPs of these tools.

According to our observation, Securify and Slither have better

recalls than Oyente, as Rule 1 and 2 are more general than Rule 3.

5 APPROACH

In this section, we will detail each step of our approach in Fig. 6,

including XCFG construction, static taint analysis, path filtering

based on PPTs, and finally outputting reachable vulnerable paths.

Table 1: #FPs due to the inconsideration or unsatisfactory

support of PPTs for different tools in our empirical study.

Slither v0.4.6 Oyente v0.2.7 Securify v1.0

PPT1 7 2 16

PPT2 28 2 51

PPT3 15 3 46

PPT4 4 0 6

PPT5 0 3 38

PPTs/all #FP 67.5% 71.42% 95.15%

5.1 XCFG Construction & Call Chain Gathering

XCG and CFG Generation.We first build the cross-contract call

graph (XCG) for Solidity programs, which are directed graphswhere

nodes are Solidity functions and edges between them denote calling

relations. The call graph of Solidity programs is generally similar

with that of other OOP languages, except that the fallback functions

and self-defined modifiers need to be considered to add additional

call edges for a more accurate call graph. For each function inside

the XCG, we also build its CFG adopted from SlithIR [20] after the

abstract syntax tree (AST) parsing.

XCFG Generation. XCFG is a combination of XCG and all the

CFGs of functions of a Solidity program (not explicitly supported

by Slither). According to the XCG, we can connect all the CFGs

for all functions and modifiers, and attain the corresponding XCFG.

Let us denote the two parts of a function call cross contracts: a

call-site node ci and a return-site node ri . There is a cross-contract
edge ci → sc from a call-site node to the start node (sc) of the
called contract c; there is also a corresponding edge ec → ri for a
dedicated exit node ec . For example, the XCFG is illustrated in Fig. 3

and Fig. 5. Different from call chains starting from the entry ofmain

function in Java, a call chain can start from any public function

in Solidity and is considered valid if its cross-contract edges are

matched (i.e., each ri is matched with the corresponding ci). In our
study, we aim to find vulnerable call chains from XCFG that satisfy

the condition — call chains with a loop due to calling unknown

external functions that may call back to the current callee function.

Hence, the problem can be reduced to that — how to find vulnerable

call chains on the XCFG as complete as possible, a typical graph

traversing problem.

The Collector.We design the call chain collector with the follow-

ing Algo. 1. Given the XCFG of a Solidity source code file, the input

includes the taint input source IS that is listed in Table 2, the set
of all public functions F and the set of all call chains CF in the

XCFG. The output yielded by the approach is the set of vulnerable

call chains VC , each of which actually abstracts a possible vulnera-
ble path (VP) that leads to a reentrancy attack at execution time.

Algo. 1 is composed of three steps: (1) identifying the vulnerable

call chains via static taint analysis at line 1 to 8, see §5.2; (2) fil-

tering the call chains that are actually non-vulnerable due to the

adoption of PPTs at line 9 to 11, see §5.3; and (3) finally outputting

all remaining vulnerable call chains as results at line 12. If the input

source file(s) have in total n functions (the maximum length of a

call chain without loop) andm lines of code (the maximum length

of a path without loop), the time complexity of Algo. 1 is O(nm).
The most time-consuming part is the two-level loop at line 1 to 8.

1034

Algorithm 1: CollectingVulCallChain(): traversing the XCFG

and collecting vulnerable call chains

input : I S , all the input source

input :F , all the public functions in XCFG

input :CF , all the call chains in XCFG

output :VC ← ∅, the set of potentially vulnerable call chains

1 foreach call chain c ∈ CF do

2 // get the concrete paths for c on the XCFG

3 Pc ← c .дetConcretePaths ()

4 foreach path p ∈ Pc do

5 s ← дetSource(I S, p) // get input source for p

6 pt ← propaдateByRules(p, s) taint propagation

7 if isSinkOf Tainted (pt) is True then

8 VC ← VC ∪ {c }, break ; // c is vulnerable

9 foreach call chain c ∈ VC do

10 if i f ExistPPT (c) is True then

11 // if a filtering pattern in Table 3 is found

VC ← VC − {c } // c is non-vulnerable

12 return VC

Table 2: The sources and rules of the static taint analyzer for

Solidity programs.

IS (1) msg.sender, tx.origin

(2) parameters of public function

Rules
(1) data assignment: a(address type) = _address

(2) address binding: object = ContractOfObject(_address)

(3) return value of functions: address/object = functon()

Sink object.method(), if object is tainted, then it is tainted

address.call.value(), if address is tainted, then it is tainted

As n andm are usually not large in real-world contract files, the

overall performance is practically good on real-world contracts.

5.2 Static Taint Analyzer

Given the concrete paths represented by call chains from the XCFG,

we identify vulnerable functions (VFs) and vulnerable paths (VPs)

by our static taint analysis as follows:

Target of Static Taint. In this study, vulnerable functions (VFs)

refer to those unsafe functions that are susceptible to reentrancy

attack. Vulnerable paths (VPs) refer to the execution paths allowing

to read external input parameters Pi (e.g., external address or trans-
action amount) and lead to a VF with variables values depending on

Pi . We also call the set of input source (IS) of parameters as tainted

data. Thus, we aim to identify the critical VPs that are susceptible

to reentrancy attack on the XCFG of a program via the tainted

data-dependency paths flowing from an IS to a VF. However, unlike

the taint analysis for Java or C++ programs, we need to consider

the special features of Solidity language.

Def and Use Relations.We first build the data dependency rela-

tionship among the variables in Solidity programs. There are two

types of program points (or nodes on XCFG) on the def-use chain

relations: 1) a use site that only reads one or multiple variables and

2) a def site that at least writes to one variable. For the 5 types of

Table 3: The filtering patterns behind PPT1–PPT5.

PPT Filtering Pattern

PPT1

(
isAuthor ized (msд .sender) ∨hasPermit (msд .sender)

)

� msд .sender .externalCall

PPT2

(
varadd == const ∨ varob j == Contract(const)

)
�(

varadd .externalCall ∨ varob j .externalCall
)

PPT3
The above two patterns in the self-defined modifiers

of functions that have external payments

PPT4

(
isChecked (vl) � w (vl) � externalCall � w

′(vl)
)

∧w (vl)! = w
′(vl)

PPT5
isChecked (Vint) � w (Vint)

�
(
varob j .transf er ()

)

variables and 14 types of operations in SlitherIR [41], we build the

def-use relations for each of the 14 types of IR operations.

Static Taint Rules.As shown in Table 2, we propose the IS for taint

analysis and the propagation rules that suit to Solidity programs.

The IS for taint includes the parameters of public functions and the

two special features of Solidity, namely tx.origin and msg.sender.

The former refers to the original external address that starts the

whole transaction, while the latter just refers to the external ad-

dress that calls the current contract. All the IS may be tainted with

malicious external addresses, and propagated to the VFs via the

propagation rules. Similar with other OOP languages, the data as-

signment operation (Rule 1) and the function return assignment

(Rule 3) propagate the tainted data. Uniquely, in Solidity, the address

binding operations (creating a contract object from an address in

Rule 2) also propagate. Finally, in the XCFG, a VP is identified if

there is a path satisfying any of the two conditions: (1) if a contract

object is tainted, calling any of its public methods (potentially invok-

ing the fallback function) is vulnerable; (2) if an address variable is

tainted, calling any of its low-level functions is vulnerable.

Specifically, Rule 1 for program/data assignment involves the

following operations in SlitherIR: assignment, binary, unary, new

operator, push, convert, array initialization, member for the three

types of variables: StateVariable, LocalVariable and SolidityVariable.

Rule 2 involves the operations of member, convert, assignment,

array initialization and index, as the address binding may refer

to one address or an array of addresses. Last, rule 3 involves the

operations of member, call, return and assignment.

5.3 Path Filtering based on PPTs

Given the VPs reported by the static taint analyzer, we need to

apply the filters that take into account the PPTs. Behind each PPT,

we define a filtering pattern shown in Table 3.

The filtering pattern for PPT1 is to check whether msg.sender

is within a list of authorized contracts or addresses, or has the

permission to do this (e.g., msg.sender==owner) and finally the above

check is required to be within the same function and before (denoted

by �) the external call of the tainted address or contract.

The filtering pattern for PPT2 is to check whether the tainted

address or object has been initialized in declaration or modified

before the external call, with a 20-byte length string constant.

The pattern for PPT3 is actually applying the above two patterns

in self-defined modifiers of the function with the suspicious tainted

object or address that has the external call.

1035

The pattern for PPT4 is to check the existence of the execution

lock, where vl denotes the boolean variable to be used as the lock
and isChecked(vl) denotes whethervl is checked via require (or if,
assert checks etc.).w(vl) denotes the first time of write operation
to vl , andw

′(vl) denotes the second time of write operation to vl .
Hence,w(vl)! = w

′(vl) means that the first and the second write
operation assign the different values to vl .

The pattern for PPT5 is to check the existence of checks-effects-

interactions pattern, where Vint denotes the set of internal vari-
ables for the current contract, w(Vint) refers to the write opera-
tions to Vint for the internal state or balance changes, and last

varob j .trans f er () denotes the external call of the build-in function
transfer(). Notably, even if varob j is tainted, the code is still non-
vulnerable, as the built-in function trans f er () using a fixed amount
of gas and will not repeatedly reenter the payment function.

5.4 Light-weight Symbolic Analysis

To make the PPT-based filtering more accurate, a light-weight sym-

bolic analysis is developed and employed across PPT1-4, assisting

the reentrancy detection. Our light-weight symbolic analysis is

both intra-procedural path-sensitive and context-insensitive to syn-

thesize a symbolic path from tainted source to the fallback call.

Then we feed the path into Z3 solver to check its feasibility.

Given a user defined threshold h, we abstract the loop analy-
sis by unrolling the loop for h iterations. Moreover, we abstract

each function call with a new variable of its return type. In other

words, our result ensures the soundness of a reported infeasible

path. Despite such an abstraction still suffers from FPs in some

cases, it largely reduces our run-time detection overhead, while still

allows us to avoid potential FPs in a considerable way. For the exam-

ple in Fig. 5, we synthesize a path “!reEntered ∧ActualBalance >
0.01 ∧ reEntered = true”, which is solved to be infeasible, which
helps us avoid the false alarm. Last, if the solver returns “unknown”

result for the synthesized symbolic path, we discard the path and

use the result of PPT for detection.

After the filtering is finished, the remaining reachable call chains

(or feasible paths) in VC will be outputted as the detection results.

6 EVALUATION

We have conducted extensive experiments to evaluate the effec-

tiveness of Clairvoyance. Specifically, we attempt to answer the

following research questions (RQs):

RQ1. How effective are the summarized PPTs? Compared with the

three available static tools, how is the precision of Clair-

voyance?

RQ2. How useful is the cross-contract static taint analysis? Com-

pared with the three static and two dynamic tools, how is

the recall of Clairvoyance?

RQ3. How efficient is Clairvoyance in analyzing real-world So-

lidity programs?

RQ4. Can Clairvoyance discover real-world unknown reentrancy

vulnerabilities, which can lead to DAO attacks?

6.1 Setup

6.1.1 Baselines. In evaluation, we use their latest versions, namely

Slither v0.6.4, Oyente v0.2.7 and Securify v1.0. To compare

Clairvoyance with the dynamic tools in terms of recall, we also

Table 4: The detection accuracy at function level for Clair-

voyance and the other three tools on the 17770 contracts∗.

Sli. v0.6.4 Oye. v0.2.7 Sec. v1.0 C.V.

#N 162 28 608 168

#TP 3 4 3 124

#FP 159 24 605 44

∗Note: #N refers to the number of detection results, #TP refers to the

number of true positives, and #FP refers to the number of false positives.

include Mythril v0.21.20 and sFuzz v0.0.1 in the tools pool. As no

multi-threading options are available, only the default settings are

used under the same machine environment.

6.1.2 Dataset for Tool Evaluation. In our evaluation, to fairly com-

pare Clairvoyance with the other tools, we choose the dataset of

17770 smart contracts, which come from Google BigQuery Open

Dataset, a different source other than the 11714 contracts used in

our empirical study. In particular, the 11714 contracts used in our

empirical study (see §4) are directly crawled from Ethereum block

chain. In this experiment, we obtained smart contracts by track-

ing their deployment addresses from the public Google BigQuery

dataset [23]. We downloaded 17770 contracts through the Etherscan

API with their deployment addresses.

6.1.3 Experimental Setup. Clairvoyance is implemented in Python

on top of the SlitherIR library. During the evaluation, all the exper-

iments and tools are conducted on a machine running on Ubuntu

18.04, with 8 core 2.10GHz Intel Xeon E5-2620V4 processor, 32 GB

RAM, and 4 TB HDD.

6.1.4 Manual Inspection. To validate the false positives (FPs) or

true positives (TPs) from these results, we hire four experienced

Solidity developers to check the detection results together with their

corresponding source code via the aid of the two dynamic tools

(i.e., Mythril and sFuzz) in two months’ time. More specially, we

asked developers to conduct cross-reference to manually evaluate

the results. We divide the developers into two groups (each with

two members). In each group, one developer evaluated the results

and the other was responsible for double checking the results.

6.2 RQ1: Evaluating the Precision

Table 4 lists the numbers of detection results of the four static tools,

i.e., 608 by Securify, 168 by Clairvoyance, 162 by Slither and 28

by Oyente. After the validation, it is found that though Securify

(i.e., using Rule 2) reports more bugs, most of them are FPs. Oyente

reports fewest bugs and is limited in catching the true bugs found

by other tools due to its coarse-grained checking rule (i.e., Rule 3).

In comparison, Clairvoyance has the most TPs and the fewest

FPs.

To understand the reasons behind the FPs reported by each

evaluated tool, we first classify the FPs into the five categories

based on PPTs. The results in Table 5 show that most of the FPs

reported by the static tools are due to ignorance or limited support

of these PPTs, including 130 of 159 FPs in Slither, 22 of 24 FPs in

Oyente, and 478 of 605 FPs in Securify— most of the FPs are due

to our summarized five PPTs. This confirms that Clairvoyance

has the best support of these PPTs, and hence achieves the best

precision.

1036

Table 5: #FPs due to the inconsideration or unsatisfactory

support of PPTs for different tools on the 17770 contracts.

Sli. v0.6.4 Oye. v0.2.7 Sec. v1.0 C.V.

PPT1 33 2 60 9

PPT2 56 4 121 10

PPT3 25 15 193 0

PPT4 9 0 1 0

PPT5 7 1 103 14

Sum 130 22 478 33

Perc. in All FPs 81.76% 91.67% 79.27% 75.00%

1 contract Betting {
2 function Betting () public payable { // constructor
3 owner = msg.sender;
4 betContrInterface = BettingContrInterface(owner);
5 }
6 function reward () internal {
7 ... // calculate house_fee
8 if (total_bettors <= 1) { forceVoidRace (); }
9 else {
10 require(house_fee < address(this).balance);
11 total_reward = total_reward.sub(house_fee);
12 betContrInterface.payHouseFee.value(house_fee)();
13 }
14 }

Figure 11: A real case using PPT2 (the hard-coded address) in

constructor at deployment time, an FP for Clairvoyance.

More specifically, we summarize the following observations from

the FP results: (1) Securify fails to consider permission controls,

hard-coded addresses and self-defined modifiers. It also falsely re-

ports the write operations after calling built-in functions send()

and transfer() as vulnerable, causing FPs since it does not consider

PPT5. (2) Oyente basically ignores the protections in self-defined

modifiers and has many FPs mostly because it ignores PPT3. (3)

Among all the FPs of Slither, it generally has a good support for

PPT3 by considering the code of security check in modifiers. How-

ever, it still has many FPs due to lack of any symbolic analysis for

PPT1 (33 cases) and PPT2 (56 cases). Considering a relatively small

number of cases in using execution lock (PPT4), Slither ignores

the protection by execution lock(s).

FP example of Clairvoyance. As shown in Table 5, the FPs

of Clairvoyance root in the limited support of PPT1, PPT2 and

PPT5. After looking into the code of these FPs, the reason for 9

FPs of PPT1 mainly lies in the complicated path conditions (e.g.,

user-defined functions in condition control), which cannot be well-

handled by our light-weight symbolic analysis — actually the path is

infeasible due to strict constraints in the user-defined functions, but

Clairvoyance reports it feasible. The reasons of 10 FPs of PPT2 are

twofold: (1) 5 FPs are due to the hard-coded address in a constructor

(see Fig. 11), (2) 5 FPs are also due to the complicated condition

solving (e.g., involving string operations) for address constants.

Last, the 14 FPs of PPT5 all belong to this kind of corner cases — the

statements relevant to PPT5 are all inside an externally unreachable

branch, but Clairvoyance falsely reports them reachable.

In Fig. 11, we show an FP example, where our filtering pattern for

PPT2 fails because of the hard-coded address in a constructor. Ac-

cording to Algo. 1, we build and search all call chains starting from a

public function— however, the constructor is not considered as an ordi-

nary public function in call chains, as it is only executed at the contract

deployment time and cannot be called by other internal/external func-

tions after that. For function reward() in Fig. 11, our taint analyzer

Figure 12: TheVenndiagram for illustrating the overlapping

and unique TPs among the evaluated static tools.

Table 6: The detection results for two dynamic tools on the

122 vulnerable contracts detected by Clairvoyance∗.

Tool #N #TP R% Detection Time (min.)

Mythril 0.21.20 13 13 10.65% 275

sFuzz 0.0.1 11 11 9.01% 115
∗Note: the two dynamic tools cannot finish on 17770 contracts within one

week, and hence are applied on 122 vulnerable contracts.

suggests that the low-level call ***.payHouseFee.value() at line 12

is vulnerable, as betContrInterface is in taint input source andwith-

out any protection from PPTs. However, this case is an FP, as the

constructor has assigned the contract address with msg.sender dur-

ing the deployment time (msg.sender is the account address of the

deploying programmer). As betContrInterface is never modified

in other places, its address is the account address of the deploying

programmer. No external address can trigger the reentrancy, and

hence it is an FP due to overlooking of PPT2 in the constructor.

Besides, there are 11 FPs of Clairvoyance due to other PPTs (not

included in §4): (1) strict gas consumption checks for one entrance

to prevent reentrancy of the payment function, (2) runtime condi-

tion checks on the basis of using block.number or block.time, which

sometimes rely on the chain status. In general, these two other PPTs

cannot be handled by static analysis. Due to page limit, more details

and examples of other PPTs are available at the website [5].

Answer to RQ1: In general, Clairvoyance exhibits a signif-

icantly better precision than the other three static tools owing

to better support of five PPTs. The other three tools need to

improve in terms of PPT1 to PPT3, while Clairvoyance needs

the deployment analysis and more accurate symbolic analysis.

6.3 RQ2: Evaluating the Recall

In Fig. 12, this Venn diagram shows that 122 TPs are found by

Clairvoyance, 3 TPs by Slither, 3 TPs by Securify and 4 TPs

by Oyente. For the overlapping part, only 2 TPs are found by all

the four static tools; Slither and Securify report the same 3 TPs;

Oyente has 2 TPs that are also found by Clairvoyance. Notably,

our tool reports 117 unique TPs missed by the three static tools.

After we inspect the 122 TPs of Clairvoyance, we find the low

recall of the three static tools is attributed to two factors: (1) 55 out

of 122 (45%) own the vulnerable call chains that involve multiple

contracts (except the external attack contract), which could be

1037

1 contract RedEnvelope {
2 function create(address token , ...) public payable {
3 ... // checks and calculattion for other variables
4 infos[hash] = Info(token , msg.sender , amount ,..., 0);
5 emit RedEnvelopeCreated(hash);
6 }
7 function sendBack(bytes32 hash) public {
8 Info storage info = infos[hash];
9 require(info.owner == msg.sender);
10 ... // more checks
11 uint back = info.amount - info.fill;
12 if (info.isSpecialERC20){
13 SpecialERC20(info.token).transfer(msg.sender ,back);
14 }else {ERC20(info.token).transfer(msg.sender ,back);}
15 emit RedEnvelopeSendBack(hash , msg.sender ,back);
16 }
17 }

Figure 13: A real case of misusing PPT1 at line 9 due to the

issue of supporting struct Info, an FN for Clairvoyance.

similar with the call chain in Fig. 3; and the three static tools fail

to conduct cross-contract analysis. (2) The other 67 TP residing in

single contract mostly have the call to externally defined high-level

functions, not those low-level functions (e.g., call()) — however,

the three static tools mainly check the call to low-level functions.

In addition to static tools, two dynamic tools are compared in

terms of recall in Table 6. Out of 122 TPs found by Clairvoyance,

Mythril and sFuzz detect 13 and 11, respectively. Hence, the two

dynamic tools show a better recall than the three static tools, but still

miss most of the TPs. As dynamic tools are significantly slower than

static tools, it will take too much time to run on the whole 17770

contracts. So we just randomly pick up the other 1000 contracts to

have testing in the wild for the two dynamic tools, and find two

vulnerable contracts (FNs) that are missed by Clairvoyance.

FN example of Clairvoyance. TPs might be missed by Clair-

voyance due to the misuse of the PPTs. For example, the FN shown

in Fig.13 mistakenly applies PPT1 (access control) for line 9 and

removes this case from the set ofVC . Nevertheless, after manual au-
diting, we find that the require check at line 9 is not to check the key

member info.token, but to check an irrelevant member info.owner.
According to hash (the source), our taint analyzer reports thewhole
struct Info as tainted due to the initialization of the struct at line 4,

and then applies PPT1 at line 9. Occasionally, due to the granular-

ity issue of the taint analyzer, it cannot accurately answer which

member of a struct object is tainted. Apart from the FN in Fig.13,

another tricky case of misusing PPT1 causes the other FN for Clair-

voyance— the external low-level call of a tainted address and a

permission check are meanwhile inside an if condition control,

which is mistakenly matched with the PPT1.

Answer to RQ2: In general, Clairvoyance exhibits much

better recall than the other three static and two dynamic tools,

owing to cross-contract call chain analysis. But misusing PPTs

will falsely filter some TPs and cause FNs for Clairvoyance.

6.4 RQ3: Evaluating the Efficiency

On the 17770 contracts, we observe that — light-weight static anal-

ysis tools are most efficient, tools based on verification or symbolic

execution are relatively slower. In Table 7, Slither and Clairvoy-

ance take the least time, 52 min and 181 min, respectively. Oyente

is less efficient, taking 1352 min. Surprisingly, Securify is the least

efficient, using 8859 min. Although Oyente supports 4 types of

vulnerability and Securify supports 7 types, the analysis over-

heads do not increase very much even when supporting more types.

Table 7: The time (min.) of reentrancy vulnerability detec-

tion for each tool on 17770 contracts.

Dataset Sli. v0.6.4 Oye. v2.0 Sec. v1.0 Clairvoyance

17770 52 1352 8859 181

Slither and Clairvoyance both depend on light-weight data/con-

trol flow analysis. Our tool has more overheads due to the support

of cross-contract static taint analysis. Oyente is based on symbolic

execution of EVM IR disassembled from EVM bytecode. The perfor-

mance issue of Securify roots in the time-consuming conversion

of IRs into Datalog format and then the verification on the datalog.

To sum up, the efficiency is essentially determined by the inherent

complexity of different techniques.

Answer to RQ3 : In general, Clairvoyance is efficient as a

light-weight cross-contract static taint analysis tool, which

avoids using verification or heavy-weight symbolic execution.

6.5 RQ4: Reproduction of DAO Attack

To confirm the vulnerabilities of TPs found by Clairvoyance, we

manually inspect 101 TPs (not detected by any other static or dy-

namic tool) and experiment with the triggering of them. According

to the hints (e.g., the vulnerable call chains) provided by Clairvoy-

ance, we conclude that 82 out of 101 TPs could be easily triggered

with high confidence, owning to two reasons: 1) no clear PPTs are

found along the vulnerable call chains, indicating their feasibility;

2) the contexts of the call chains are not too complicated to under-

stand, allowing us (or external attackers) to understand the flaws

in the business logic. The remaining 19 TPs, for which we are with

low confidence, have complicated logic for understanding and own

complex constraints in paths that may be undecidable for static

analysis. In the tool website [5], we have added the exploitation

code (succeed on our private chain) for 20 out of the 82 TPs, and we

will gradually add more. Here, we detail two interesting TPs:

Case 1 at 0x7bc51b19abe2cfb15d58f845dad027feab01bfa0. A simple

case is the contract DividendDistributor with 6 transaction times

and a total transaction amount of 1.6 Ethers. The vulnerable call

chain involves 5 functions from 2 contracts and has an internal vul-

nerable function loggedTransfer(), which proceeds the transaction

with unchecked the transfer target and the amount. The low-level-

call of the transfer function is tainted. We can easily trigger this

reentrancy and steal money from it.

Case 2 at 0x526af336D614adE5cc252A407062B8861aF998F5. A com-

plicated case is the contract SaiProxy with 9,987 transaction times

and a total transaction amount of 107,172 Ethers. The shortest vul-

nerable call chain involves 4 external contracts and its length is 8

functions. The function call tub.gem().deposit.value(msg.value)()

is the low-level-call of tainted object tub. We can recursively call

this function for causing gas exhaustion.

Answer to RQ4: Based on the vulnerable call chains re-

ported by Clairvoyance, triggering the TPs of reentrancy is

facilitated and proves the effectiveness of Clairvoyance in

practice.

1038

6.6 Discussion

6.6.1 Generality of PPTs. PPTs can be applied for other bug types,

like self-destruct abusing [8]. For example, ignoring PPT3 (self-

defined modifiers) when detecting self-destruct abusing causes

FPs, since strict permission control could be done via PPT3 and

make the function sel f destruct() not accessible by the non-owner.
Besides, PPT3 is also found to prevent the bug of unexpected revert

[15], and tools ignoring PPT3 will inevitably yield FPs. More details

on using PPTs for detecting other types of bugs are available in [5].

6.6.2 Threats to Validity. Threats to internal validity come from

the threshold h used in the light-weight symbolic analysis. Cur-

rently, h is set to 2 for unrolling every loop (e.g., while) up to twice.
We find that increasing the value (e.g., up to 5) does not have sig-

nificant impact on our results. The reason is that not many loops

are solved along the paths for the PPTs. Threats to external validity

mainly come from the representativeness of the two datasets of

smart contracts. However, there is no dataset available in previous

papers [35, 49, 50]. During the past two years, we have tried our

best to collected and downloaded 11714 real-world contracts from

Etherscan to assess the existing tools and summarize the PPTs.

To avoid the bias of using one dataset, we use the 17770 contracts

in Google BigQuery Open Dataset for tools evaluation. We will

release and contribute our datasets to the community.

6.6.3 Future Enhancement. Our Clairvoyance is not designed for

the compositional analysis, i.e., how can we avoid redundant inter-

procedural analysis when a few new contracts are added into our

analysis scope. The major runtime overhead for non-compositional

analysis of our approach lies in that Clairvoyance needs to search

through all the contract scope for its caller contracts. The larger

the scope, the more overhead it will incur. In the future, we plan to

investigate incremental and compositional analysis for reentrancy

detection by caching and indexing the call relation among contracts.

Note that, the overhead for re-analyzing for callee contract is ac-

ceptable as a contract consists of only up to a few hundred lines of

code, which requires only about 0.5 second for the callee analysis

of individual contract.

7 RELATEDWORK

7.1 Reentrancy Detection in Smart Contracts

Recently, many security scanners have been proposed for vulnera-

bility detection in smart contracts. Among them, Manticore [48],

Mythril [13], sFuzz [21], MythX [14], Echidna [47], Contract-

Fuzzer[24] and Ethracer [26] belong to dynamic testing/fuzzing

tools. Other scanners, including Slither [49], Oyente [35, 36],

SmartCheck [11, 46], Securify [10, 50], Octopus [4], Zeus [25],

Maian[39] and sCompile [12], are based on static analysis. Notably,

Maian and sCompile support inter-contract function call analysis

and apply verification technique, but do not support reentrancy

detection.

However, in static tools, only Slither, Oyente, Securify and

Zeus support the detection of reentrancy vulnerability. Among

them, Slither [49] serves as an analysis framework and runs the

built-in reentrancy detector on the basis of intra-contract control/-

data flow analysis. Oyente [35] works on the EVM IR and leverages

Z3-solver [17] for constraint solving in symbolic execution. Secu-

rify [50] converts EVM bytecode into datalog representation and

then applies verification on the datalog. Zeus [25] adopts XACML

as a language to write the safety and fairness properties, converts

them into LLVM IR [3] and applies a verification engine (e.g., Sea-

Horn [22]). Notably, Zeus is not included in tool comparison, as it

is not open-sourced. Recently, VerX [40], an automated verifier, has

been proposed to prove functional properties of Ethereum smart

contracts. VerX could detect a wide range of vulnerabilities via

techniques of reducing temporal property verification for reach-

ability checking, a new symbolic execution engine, and delayed

predicate abstraction. Compared with all above tools, Clairvoy-

ance makes the first attempt at adopting PPTs for path feasibility

analysis.

7.2 Interprocedural Analysis

Call graph construction is the fundamental requirement for inter-

procedural static analysis, which is used in many program analysis

applications such as software debugging and testing [30–32, 37, 51],

code recommendation [29, 33], and template-based code reuse [28,

29]. There exist many call graph construction algorithms for re-

solving virtual dispatches and indirect calls for traditional Java and

C/C++ programs by using class hierarchy analysis [18], rapid type

analysis [9], variable type analysis [45], and pointer analysis [19, 27].

Unlike conventional Java or C/C++ programs, Solidity has new and

complicated language features, such as low-level calls, explicit ma-

nipulations of contract addresses via keywords (e.g., msg.sender

and address(this)), fallback mechanisms and inter-contract call-

backs (similar to resolving callbacks in event-driven programs such

as Android apps [52, 53]). Interprocedural static taint analysis has

also been studied as an instance of data-flow analysis. The analy-

sis normally conducts reachability analysis on top of a program’s

data-flow graph which is either pre-computed using fast and impre-

cise analysis [34, 44] or being built on-the-fly in a demand-driven

manner [7, 43]. Different from previous approaches on Java and

C/C++, this work conducts inter-contract static taint analysis on

top of smart contract programs by considering Solidity’s 14 types

of IR operations to support precise taint propagation in detect-

ing reentrancy vulnerability, one of the most important types of

vulnerabilities in smart contracts.

8 CONCLUSION

In this paper, we present a reentrancy detection approach based on

(1) applying the light-weight cross-contract static taint analysis to

find reentrancy candidates and (2) integrating the PPTs to refine the

results. On the publicly collected 17770 contracts, Clairvoyance

significantly outperforms the three static tools in terms of precision

and recall, and two dynamic tools in terms of recall. In the future, we

will extend our approach by combining with dynamic approaches

for detecting more vulnerability types.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation

of China (Grant No. 61972373) and partially supported by the Aus-

tralian Research Council under Grant DP200101328. The research

of Dr. Xue is supported by CAS Pioneer Hundred Talents Program.

1039

REFERENCES
[1] 2015. Ethereum: Blockchain App Platform. https://www.ethereum.org/. (2015).

Online; accessed 29 January 2019.
[2] 2019. A Block Explorer andAnalytics Platform for Ethereum. https://etherscan.io/.

(2019). Online; accessed 29 January 2019.
[3] 2019. LLVM Language Reference Manual. https://blog.sigmaprime.io/solidity-

security.html. (2019). Online; accessed 29 January 2019.
[4] 2019. Octopus. https://github.com/quoscient/octopus. (2019). Online; accessed

29 January 2019.
[5] 2020. Clairvoyance:. https://toolman-demo.readthedocs.io/en/latest/index.html.

(2020). Online; accessed 1 May 2020.
[6] Adrian Manning. 30 May 2018. Solidity Security: Comprehensive List of Known

Attack Vectors and Common Anti-patterns. https://blog.sigmaprime.io/solidity-
security.html. (30 May 2018). Online; accessed 29 January 2019.

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Acm Sigplan Notices, Vol. 49. ACM, 259–269.

[8] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2016. A survey of attacks
on Ethereum smart contracts. IACR Cryptology ePrint Archive 2016 (2016), 1007.

[9] David F Bacon and Peter F Sweeney. 1996. Fast static analysis of C++ virtual
function calls. ACM Sigplan Notices 31, 10 (1996), 324–341.

[10] ChainSecurity. 2019. Securify. https://securify.chainsecurity.com/. (2019). Online;
accessed 29 January 2019.

[11] ChainSecurity. 2019. Smart Check. https://tool.smartdec.net/. (2019). Online;
accessed 29 January 2019.

[12] Jialiang Chang, Bo Gao, Hao Xiao, Jun Sun, and Zijiang Yang. 2018. sCompile: Crit-
ical Path Identification and Analysis for Smart Contracts. CoRR abs/1808.00624
(2018). arXiv:1808.00624 http://arxiv.org/abs/1808.00624

[13] ConsenSys. 2019. Mythril. https://github.com/ConsenSys/mythril-classic. (2019).
Online; accessed 29 January 2019.

[14] ConsenSys. 2019. MythX. https://mythx.io/. (2019). Online; accessed 29 January
2019.

[15] ConsenSys Diligence. 2019. Ethereum Smart Contract Best Practices:Known
Attacks. https://consensys.github.io/smart-contract-best-practices/known_
attacks/. (2019). Online; accessed 29 January 2019.

[16] David Siegel. [n. d.]. Understanding the DAO Attack. Website. ([n. d.]). https:
//www.coindesk.com/understanding-dao-hack-journalists.

[17] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In TACAS 2008. 337–340.

[18] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-
oriented programs using static class hierarchy analysis. In European Conference
on Object-Oriented Programming. Springer, 77–101.

[19] Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. 2017. Boosting the
precision of virtual call integrity protection with partial pointer analysis for C++.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 329–340.

[20] Josselin Feist, Gustavo Greico, and Alex Groce. 2019. Slither: A Static Analysis
Framework For Smart Contracts. In 2nd IEEE/ACM International Workshop on
Emerging Trends in Software Engineering for Blockchain, WETSEB@ICSE 2019,
MontrÃľal, Canada. to appear.

[21] GuardStrike. 2019. sFuzz: An AFL based fuzzer for smart contracts. https:
//fuzzing.gitbook.io/sfuzz/. (2019). Online; accessed 27 May 2019.

[22] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.
2015. The SeaHorn Verification Framework. In CAV 2015. 343–361.

[23] Google Inc. 2019. Google Big Query Open Dataset. https://cloud.google.com/
bigquery/public-data. (2019). Online; accessed 29 January 2019.

[24] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: fuzzing smart contracts
for vulnerability detection. In ASE. ACM, 259–269.

[25] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In NDSS 2018.

[26] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena.
2019. Exploiting the laws of order in smart contracts. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2019, Beijing, China, July 15-19, 2019. 363–373. https://doi.org/10.1145/3293882.
3330560

[27] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java points-to analysis using S
park. In International Conference on Compiler Construction. Springer, 153–169.

[28] Yun Lin, Guozhu Meng, Yinxing Xue, Zhenchang Xing, Jun Sun, Xin Peng, Yang
Liu, Wenyun Zhao, and Jinsong Dong. 2017. Mining implicit design templates
for actionable code reuse. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 394–404.

[29] Yun Lin, Xin Peng, Zhenchang Xing, Diwen Zheng, and Wenyun Zhao. 2015.
Clone-based and interactive recommendation for modifying pasted code. In

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
520–531.

[30] Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong. 2020.
Recovering fitness gradients for interprocedural Boolean flags in search-based
testing. In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 440–451.

[31] Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun Wang, and Jinsong Dong.
2018. Break the dead end of dynamic slicing: localizing data and control omission
bug. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. 509–519.

[32] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong Dong. 2017. Feedback-
based debugging. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 393–403.

[33] Yun Lin, Zhenchang Xing, Xin Peng, Yang Liu, Jun Sun, Wenyun Zhao, and
Jinsong Dong. 2014. Clonepedia: Summarizing code clones by common syntac-
tic context for software maintenance. In 2014 IEEE International Conference on
Software Maintenance and Evolution. IEEE, 341–350.

[34] V Benjamin Livshits and Monica S Lam. 2003. Tracking pointers with path and
context sensitivity for bug detection in C programs. ACM SIGSOFT Software
Engineering Notes 28, 5 (2003), 317–326.

[35] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.
Making Smart Contracts Smarter. In CCS 2016. 254–269.

[36] melonproject. 2019. Oyente. https://github.com/melonproject/oyente. (2019).
Online; accessed 29 January 2019.

[37] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.
sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts. In Proceedings
of the 42nd International Conference on Software Engineering.

[38] Nick Szabo. 1996. Smart Contracts: Building Blocks for Digital Markets.
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/
Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html.
(1996). Online; accessed 29 January 2019.

[39] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. In Proceedings
of the 34th Annual Computer Security Applications Conference, ACSAC 2018, San
Juan, PR, USA, December 03-07, 2018. 653–663. https://doi.org/10.1145/3274694.
3274743

[40] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. 2020. VerX: Safety Verification of Smart Contracts. In IEEE S&P
2020.

[41] SlithIR Dev. Team. 2019. SlithIR Types. https://github.com/crytic/slither/wiki/
SlithIR. (2019). Online; accessed 30 June 2019.

[42] Solidity Dev. Team. 2019. Solidity — Security Considerations. https://solidity.
readthedocs.io/en/v0.5.0/security-considerations.html. (2019). Online; accessed
30 June 2019.

[43] Yulei Sui and Jingling Xue. 2016. On-demand strong update analysis via value-
flow refinement. In Proceedings of the 2016 24th ACM SIGSOFT international
symposium on foundations of software engineering. ACM, 460–473.

[44] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static memory leak detection using
full-sparse value-flow analysis. In Proceedings of the 2012 International Symposium
on Software Testing and Analysis. ACM, 254–264.

[45] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. 2000. Practical virtual method
call resolution for Java. Vol. 35. ACM.

[46] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,
Evgeny Marchenko, and Yaroslav Alexandrov. 2018. SmartCheck: Static Analysis
of Ethereum Smart Contracts. InWETSEB@ICSE 2018. 9–16.

[47] trailofbits. 2019. Echidna. https://github.com/trailofbits/echidna. (2019). Online;
accessed 29 January 2019.

[48] trailofbits. 2019. Manticore. https://github.com/trailofbits/manticore. (2019).
Online; accessed 29 January 2019.

[49] trailofbits. 2019. Slither. github. (2019). https://github.com/trailofbits/slither.
[50] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,

Florian Bünzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. In CCS 2018. 67–82.

[51] Haijun Wang, Yun Lin, Zijiang Yang, Jun Sun, Yang Liu, Jin Song Dong, Qinghua
Zheng, and Ting Liu. 2019. Explaining regressions via alignment slicing and
mending. IEEE Transactions on Software Engineering (2019).

[52] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static control-flow analysis of user-driven callbacks in Android applications. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 89–99.

[53] Yifei Zhang, Yulei Sui, and Jingling Xue. 2018. Launch-mode-aware context-
sensitive activity transition analysis. In 2018 IEEE/ACM 40th International Confer-
ence on Software Engineering (ICSE). IEEE, 598–608.

1040

